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ABSTRACT

We consider the problem of navigation error detection in syn-

thetic aperture sonar images. Specifically, the effect of errors

in the position and attitude of the sonar antenna is explored

in the image and frequency domain. We present two met-

rics which can be used to discriminate between images with

different degrees of navigation errors. A systematic test is

developed which allows an automatic detection of navigation

errors. Simulated synthetic aperture sonar images are used to

test the presented methods.

1. INTRODUCTION

The principle of synthetic aperture sonar (SAS) [3] is to create

virtual antenna structures when combining the signals gener-

ated by multiple pings from a single physical antenna in mo-

tion. Ideally, the pose trajectory of the physical antenna is

represented by a straight line for the reference position and

a constant attitude for the antenna to form a perfect linear

virtual array. However, deviations from this ideal trajectory

are unavoidable due to external physical disturbances acting

on the sensor carrier. If the stave positions (i.e. the pose

trajectory of the antenna) are known precisely, they can be

taken into account within the SAS image reconstruction algo-

rithm. Hence a precise knowledge of the sensor position at

each point in time is crucial for a successful SAS image re-

construction.

In practice, the sensor position estimates are subject to errors

of the navigation system of the sensor carrier. Unfortunately,

this estimation imperfection can lead to serious degradations

of the SAS performance. As a consequence, the sensitivity of

the SAS performance against pose estimation errors is crucial

for a common design of an SAS system and the underlying

navigation system.

Navigation errors which vary over the synthetic antenna

length lead to an out-of-focus effect, i.e. an increasing local

image variability around the target which complicates, e.g.,

discrimination of two closely spaced targets or estimation of

the true target contours.

In this paper, we consider the problem of assessment of nav-

igation accuracy which is relevant to an SAS system. We

present several metrics which only use the information at

hand, i.e. the SAS image itself. This is of high practical

interest and will enable a systematic decision as to the qual-

ity of an SAS image in view of navigation errors. Based on

different metrics, hypothesis tests are used to automatically

distinguish between SAS images with and without navigation

errors. The performance of the proposed metrics is assessed

based on simulated SAS images. Based on these results, we

confirm the practicability of the proposed techniques in view

of accuracy and implementability.
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(a) Close-up: SAS image without navigation errors
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(b) Close-up: SAS image with navigation errors

Fig. 1. SAS images including five point scatterers

2. DATA ANALYSIS

It is our objective to identify features in SAS images that can

be used to discriminate among scenarios with and without

navigation errors. These features shall then be used to derive



procedures that perform automatic detection of navigation er-

rors. For all data sets the scene is represented by a line of

five point scatterers. Five images were generated for different

orientations of this scene (horizontal, oblique and vertical).

A high fidelity sonar simulation tool [1] was used to gener-

ate the image data, the target range is approximately 100 m.
The perturbed navigation data have been created with sensor

level error models for a typical sensor suite of an autonomous

underwater vehicle, comprising models for an inertial mea-

surement unit, a depth sensor and a Doppler velocity log.

Two typical close-ups of these SAS images, one with and one

without navigation errors are shown in Figure 1 (a) and (b).

As can be seen, the presence of navigation errors leads to

an out-of-focus effect which complicates target detection and

discrimination. This increased local image variability will be

used in the following as a measure to detect navigation errors.

3. PROPOSEDMETHODS

We present selected methods, developed to tackle the prob-

lem of navigation error detection in SAS images. The met-

rics used to discriminate among SAS images with and without

navigation errors are classified as follows:

• Probabilistic metric: Here, we consider metrics

which operate directly on the data in the image domain.

Navigation errors can be detected based on probabil-

ity density functions (pdf’s). The proposed method is

based on the Hill estimator [5].

• Spectral domain-based metric: The presence of nav-
igation errors leads to differences in the structure of the

two-dimensional spectrum, especially when consider-

ing the high-frequency region. We present two metrics

to detect the structural differences in the spectrum and

thus allow for discrimination between SAS images with

and without navigation errors.

3.1. Preprocessing

In order to concentrate on the region of interest in SAS im-

ages, two preprocessing steps have been taken place before

applying the different approaches for evaluating the naviga-

tion accuracy. They are:

1. Cropping: The region of interest manifests itself as

higher pixel values in the scene. Therefore, we crop

the SAS image by taking a window of size 100 × 100
around the maximum pixel value in the scene. By per-

forming the cropping operation approx. 90 − 99% of
the signal energy is preserved while reducing the data

size considerably

2. Normalization: The dynamic range of the SAS images

differs according to their level of navigation accuracy.

Therefore, we normalize the cropped SAS images in

order to remove this effect. The normalization is done

using:

X(n, m) =
X0(n, m) −min(X0(n, m))

max(X0(n, m)) −min(X0(n, m))
(1)

whereX0(n, m)with n = 1, ..., N0 andm = 1, ..., M0

is the original SAS image and X(n, m) with n =
1, ..., 100 and m = 1, ..., 100 is the cropped and nor-
malized SAS image which will be used in the sequel.

Note that X(n, m) ∈ [0, 1] ∀ n, m

3.2. Probabilistic metrics

Initial probabilistic analysis of the SAS images has indicated

that they show different probability distributions due to the in-

herent navigation errors. Typical estimates of the probability

density function (pdf) which have been obtained using ker-

nel density estimators [6] can be seen in Figure 2. As can be

seen, the presence of navigation errors leads to heavier tails in

the density function. To cope with this effect, we use the Hill

estimator to quantitatively measure the differences between

pdf’s.
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Fig. 2. Kernel density estimation.

The Hill estimator provides an estimate of the tail index

α̂k as:

α̂k =

{

1

k − 1

k−1
∑

i=1

ln
X(i)

X(k)

}−1

. (2)

where X(i), i = 1, 2, . . . , N are the descending order statis-
tics from the sequence of observations with X representing
the vectorized image and k > 1 being the number of tail ob-
servations. The estimated tail index for all five scenarios with

and without navigation errors are presented in Figure 3 where

we empirically chose k = 45.
The results of Figure 2 confirm our conjecture that the scenar-

ios with navigation errors tend to be heavy-tailed distributed,

yielding a larger tail index.

3.3. Spectral-domain based metrics

An alternative way of detecting navigation errors from SAS

images is to search for differences in the two-dimensional

spectrum [2]. The structure of the 2D spectrum differs, de-

pending on the strength of navigation errors. We motivate

two spectral domain-based metrics to detect the presence of

navigation errors. The 2D spectra of the SAS images from
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Fig. 3. α̂ for all scenarios.

Figures 1 (a) and (b) are shown in Figure 4 (a) and (b). Here,

the 2D periodogram has been used as a spectral estimator, i.e.
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An increased signal energy in the high-frequency region can

be observed when navigation errors are present. This moti-

vates to use the following metric:

E(ĈXX(ejω1 , ejω2)) =
∑

(ω1,ω2)∈R

ĈXX(ejω1 , ejω2) (4)

The region R should be chosen in such a way that the high-
frequency components of the spectrum is included, e.g. the

second spectral quadrant:

R = {(ω1, ω2)|ω1 > π/2 and ω2 > π/2} (5)

The results when using the above presented metric can be

seen in Figure 5.

As can be seen, the SAS images without and with nav-

igation errors can be well separated using the energy in the

second spectral quadrant as a metric.

4. DETECTION OF NAVIGATION ACCURACY

In order to perform a systematic test for navigation errors, a

hypothesis test framework [4] is exemplarily derived for the

energy metric in a region of the 2D spectrum and the Hill

estimator. We consider the two hypotheses

H0: no navigation errors present

H1: navigation errors present

4.1. Spectral energy driven systematic tests

The summation over a large number of samples in Equa-

tion (4) motivates to model E(ĈXX(ejω1 , ejω2)) via the cen-
tral limit theorem as being Gaussian distributed with mean
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(a) Case 1: Without navigation errors
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(b) Case 2: With navigation errors

Fig. 4. 2D-Spectra
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Fig. 5. Energy in the second spectral quadrant

(µ0, σ0) and (µ1, σ1) forH0 andH1 respectively. For the test

to be performed we use the conditional probability density



functions

p(E(ĈXX(ejω1 , ejω2))|H0) =
1√

2πσ0

·

e
−

(E(ĈXX (ejω1 ,ejω2 ))−µ0)2

2σ2
0

(6)

and

p(E(ĈXX(ejω1 , ejω2))|H1) =
1√

2πσ1

·

e
−

(E(ĈXX (ejω1 ,ejω2 ))−µ1)2

2σ2
1

(7)

The likelihood ratio test (LRT) can thus be formulated as

LR(ĈXX(ejω1 , ejω2))) =
p(E(ĈXX(ejω1 , ejω2))|H1)

p(E(ĈXX(ejω1 , ejω2))|H0)

H1

≷
H0

γ

(8)

where γ is the LRT threshold which maximizes the proba-
bility of detection, while controlling the probability of false-

alarm. For the assumed Gaussian distributions, Equation (8)

reduces to

LR(ĈXX(ejω1 , ejω2))) =
σ0

σ1
·

exp

(

− (E(ĈXX(ejω1 , ejω2)) − µ1)
2

2σ2
1

+

(E(ĈXX(ejω1 , ejω2)) − µ0)
2

2σ2
0

)

H1

≷
H0

γ

(9)

γ can be obtained by fixing a false-alarm rate pFA as

pFA =

∫

∞

γ

fL(L|H0)dL (10)

where fL(L|H0) is the distribution of the likelihood ratio
under the null hypothesis. For the Gaussian distribution as-

sumed above, this reduces to a direct thresholding, i.e.

E(ĈXX(ejω1 , ejω2))
H1

≷
H0

β (11)

where β can be found via

β =
√

2σ0erf
−1(1 − 2pFA) + µ0 (12)

where erf−1 is the inverse error function. In practice,

µ0 and σ0 are unknown and need to be estimated. This

can be done by considering a training data set of SAS

images
{

X l(n, m)
}L

l=1
under H0, calculating the metric

E(Ĉl
XX(ejω1 , ejω2)) for each data set and then evaluating

µ̂0 =
1

L

L
∑

l=1

E(Ĉl
XX(ejω1 , ejω2)) (13)

and

σ̂0 =

√

√

√

√

1

L − 1

L
∑

l=1

(

E(Ĉl
XX(ejω1 , ejω2)) − µ̂0

)2

(14)

Applying the presented test using the SAS images presented

before we find that the P-Value for the presented test is at
13.2%, i.e. the nominal false-alarm rate pFA can be chosen

up to this level without actually causing a false alarm. On the

other hand, as long as pFA is chosen to be greater or equal to

1% no missed detection will occur.

4.2. Tail index driven systematic tests

It is known [5] that the Hill estimator is asymptotically nor-

mal. This motivates to use a similar test as for the spectral

measure, i.e. modelling the null and alternative hypotheses as

Gaussian distributions where the parameters of the null hy-

pothesis can be found via a training set of SAS images under

H0. Therefore, we can use the above mentioned test. The

parameters µ0 and σ0 can be estimated as follows:

µ̂0 =
1

L

L
∑

l=1

α̂l (15)

and

σ̂0 =

√

√

√

√

1

L − 1

L
∑

l=1

(α̂l − µ̂0)
2

(16)

Given our data examples, the P-Value for the this test is at
15.67%, i.e. the nominal false-alarm rate pFA can be chosen

up to this value without causing a false alarm. On the other

hand, when pFA is chosen to be greater or equal to 7.6% no
missed detection will occur.

5. CONCLUSION

Two metrics, one in the image and one in the frequency do-

main have been presented that can be used to discriminate

between SAS images with different degrees of navigation er-

rors. A systematic test has been derived which can be used

to automatically detect the presence of navigation errors. The

presented metrics and tests have been evaluated using simu-

lated SAS images and navigation errors.
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