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ABSTRACT
In this paper we discuss the use of ensemble methods in re-
mote sensing. After a review of the relevant state of the art
in ensemble learning - inside and outside the remote sens-
ing community - we provide the necessary theoretical back-
ground of this research field. This includes a discussion of
the bias/variance tradeoff that is a key notion in machine
learning and especially ensemble learning. We provide a
review of three of the most relevant and prominent tech-
niques in ensemble learning, namely the Random Forest, Ex-
tra Trees and the Gradient Boosted Regression Trees algo-
rithms. All algorithms are assessed in terms of their theoret-
ical properties as well as applicability for remote sensing use
cases. Finally, in the experimental section we compare their
performance in challenging remote sensing datasets with dif-
ferent properties, while discussing again the reasons that the
mechanics of each algorithm might give it an advantage un-
der certain conditions.

1. TOPIC MOTIVATION AND SIGNIFICANCE

In recent years ensemble methods have gained significant at-
tention and have been successfully applied in many different
fields [1, 2, 3, 4]. Some of their key advantages include in-
herent support of parallelism, easiness to implement, highly
accurate predictions and the ability to handle a very large
number of input variables without overfitting. Applications
of ensemble learning in areas such as data mining, pattern
recognition and predictive analytics showed significant ben-
efit, making it part of every machine learning practitioner’s
toolkit. It is noteworthy that some of the most famous ma-
chine learning competitions such as the Netflix Prize [5, 6],
were won using ensemble methods.

As a generically applicable machine learning toolkit en-
semble methods also found their way in the remote sensing
community. There are several reasons why ensemble meth-
ods are highly beneficial in remote sensing applications.

1. Ensemble methods can provide a strong increase in
prediction accuracy compared to some baseline meth-
ods (e.g., logistic regression that is often used as base-

line in several domains of machine learning classifi-
cation, even though it is less commonly applied for
remote sensing applications). At the same time they
typically offer similar accuracy (arguably even a bit
higher on average across numerous real-world datasets
[7]) to other state of the art methods such as SVMs.

2. In many remote sensing applications the training set
might not be perfectly representative for the situations
in which the classifier is applied later. This holds
especially for scenarios with a high dimensionality
and large data size. Ensemble methods typically show
higher degree of generalisability in such situations.

3. It is often unfeasible to learn one single strong clas-
sifier, e.g. a single SVM, if the training dataset is
too large. Ensemble methods have better big-O com-
plexity and inherently support parallelism by training
a multitude of weak learners, each of them on a small
portion of the training set. This allows running the
training process on multiple cores or computers which
is highly attractive in many situations.

Formally, an ensemble is a technique for combining
numerous weak learners in an attempt to produce a strong
learner. An ensemble is a supervised learning method, since
it has the capacity to be trained and then used to perform
predictions. As such, the ensemble also represents a single
hypothesis in the solution space. However, this hypothesis
is not necessarily contained within the space of the mod-
els which were used to construct the ensemble. Therefore
ensembles typically have more flexibility in the functions
they can represent, which can result in a reduction of model
bias [8]. Considering the typical bias-variance decomposi-
tion and the bias-variance tradeoff [9], an increase in model
complexity is often associated with an increase in variance,
since the more complex model is potentially more prone to
overfitting the training data. This effect is encountered to a
different extent in various ensemble methods, but some of
them are specifically designed to reduce the variance part
component of the error (e.g., Bagging).



Although numerous variations of tree-based ensembles
have been proposed in the literature, three dominant algo-
rithms have emerged from successful application in a vari-
ety of application areas. The first of them and perhaps the
most well known is the Random Forest (RF) algorithm, as
proposed by Breiman [10] which recently was also applied
to hyperspectral imagery [11], [9]. The second one is the
Extra Trees (ET) algorithm, that pushes the randomization
idea further, targeting an even more significant reduction in
variance compared to the Random Forest. Finally, the third
algorithm, often called Gradient Boosted Regression Trees
(GBRT) or Gradient Tree Boosting is of completely differ-
ent nature, as it aims to reduce mostly model bias. In this
paper we are comparing the goals, assumptions and limita-
tions of the three algorithms under a unified framework of
bias-variance decomposition. Moreover, we discuss their
advantages and disadvantages, both in general as well as
in particular for the field of data fusion in remote sensing.
We compare their performance in challenging remote sens-
ing datasets with different parameters, and we conclude with
practical considerations for the selection of the appropriate
algorithm given the data at hand.

It should be noted that the current paper focuses on com-
paring the tree-based algorithms that are typically available
in most machine learning packages (e.g., implementations
of these algorithms are freely available in at least Matlab,
Python, and R among others) and thus can be easily in-
tegrated in a practitioner’s toolbox. More recent variants
like for example the Rotation Forest that have shown very
promising results in the field of remote sensing [12], [13],
and [14] but are still not easily available (e.g., there are
fewer open source implementations) are not part of the
current study. Excluding these recent works, the selected
algorithms that we study in the paper can be considered as
a generalization of most tree-based ensembles, for example
Tree Bagging is a special case of Random Forest (when in
every node the full feature set is considered for doing the
split [10]) while most of the boosting algorithms can also be
derived from Gradient Boosted Regression Trees (e.g., Ad-
aBoost is derived from GBRT using a special cost function,
as described in [15]).

The rest of the paper is structured as follows: Section 2
gives an overview of the state of the art in ensemble learning,
both inside and outside the field of remote sensing. Section
3 provides the necessary theoretical foundations of ensem-
ble learning while Section 4 provides a detailed summary of
the three most widely used ensemble learning techniques in-
cluding best practices. Experimental results on three remote
sensing datasets are shown in Section 5 before the paper ends
with a conclusion in Section 6.

2. A SHORT HISTORY OF ENSEMBLE LEARNING

Combining the results of several classifiers in a systematic
way has been a significant topic of research since the late
1980s and early 1990s. It was the work by Breiman [16],
Clemen [17], Wolpert [8], Hansen and Salamon [18] as well
as Freund and Schapire [19] among others that laid the theo-
retical foundations of the flourishing field of ensemble meth-
ods that we see nowadays.

Two-well known methods from this time include Boot-
strap Aggregation (Bagging) [16] and Boosting [19]. In Bag-
ging trees are independently constructed using a bootstrap
sample of the whole dataset [20, 21]. A majority voting
scheme in the end performs the overall decision. In Boosting
on the other hand trees are not independently constructed but
give information to the following tree constructors yielding
a weighted majority vote for the final decision. An adap-
tive version of Boosting, AdaBoost [22] was developed in
1995, yielding the Gödel prize for their inventors Freund and
Schapire in 2003. Still nowadays, AdaBoost is known to be
one of the best out-of-the-box classification algorithms and
has been applied to numberless machine learning problems.

The next breakthrough in ensemble learning happened
when Breiman introduced the Random Forest [10] in 2001.
This algorithm combines Breiman’s earlier idea of Bagging
with randomised feature selection. The Random Forest soon
was applied in various domains including biomedicine [23,
24, 25, 26] image classification [27, 28, 29] and various en-
gineering applications [30].

Ensemble methods were applied in several fields within
remote sensing, for example in [31], [32], [33], and [34],
a trend that is especially prominent in classification of hy-
perspectral imagery [35, 36, 37, 11, 38, 9, 39]. This is not
surprising since hyperspectral image classification can ben-
efit in several ways from ensemble methods. First, it has
been shown [11, 38] that prediction accuracy for classifica-
tion is often increasing when moving from e.g. SVM-based
classification appraoches to Random Forests. Second, in this
application one is usually faced with having limited training
data that might not be perfectly representative to the sce-
narios it is applied later on. Ensemble methods generally
have stronger generalization capabilities which makes them
well suited for this case. Finally, especially if the feature
representation of the individual classes is high-dimensional
training a single strong learner has high computational com-
plexity. Ensemble methods have been shown to significantly
decrease training time.

We expect that in the coming years ensemble methods
will become the standard tool for selected applications in
remote sensing. This holds especially for all classification
and data fusion tasks that involve a high-dimensional feature
space.



3. THEORY ON ENSEMBLE LEARNING AND THE
BIAS VARIANCE TRADEOFF

The bias-variance decomposition distinguishes between (1)
the bias error, which is a systematic error component asso-
ciated with the learning algorithm and the complexity of the
hypotheses set, (2) the variance error, which is an error com-
ponent associated with differences in the selected hypothesis
for different training sets and (3) an error component asso-
ciated with the inherent uncertainty in the domain. How-
ever, while this decomposition is easy and intuitive for re-
gression functions and squared error, an one-to-one mapping
in the case of multi-class classification problems with differ-
ent loss functions is not straightforward and various formu-
lations have been proposed [40], [41], [42], [43], and [44]. A
generic formulation that offers several desirable theoretical
properties was introduced in [43] and we adopt this formu-
lation here.

For a given training set{(x1, uo(x1)), ..., (xn, uo(xn))},
a learner produces a certain hypothesis f . Given a test point
xo, this hypothesis generates a prediction f(xo) = y. As-
suming again u(xo) = t is the true value of the predicted
variable for the test point xo, then a loss function L(t, y)
measures the cost of predicting y when the true value is t.
Commonly used loss functions are squared loss L(t, y) =
(t − y)2, absolute loss L(t, y) = |t − y|, and zero-one loss
L(t, y) = 0 if y = t, L(t, y) = 1 otherwise. The first two are
broadly used in regression while the third one is the default
option for classification problems. In the context of a given
loss function the goal of learning can be phrased as produc-
ing a hypothesis with the smallest possible loss, meaning that
the chosen hypothesis minimizes the average L(t, y) over all
points, with each point weighted according to its probability.

The optimal prediction y∗ for a point xo is the prediction
that minimizes Et[L(t, y∗)], where the subscript t indicates
that the expectation is taken with respect to all possible val-
ues of t, weighted according to their probabilities given x.
The optimal hypothesis is the one for which f(x) = y∗ for
every x and even this hypothesis will have non-zero loss.
In the case of zero-one loss function, the optimal hypothe-
sis is the Bayes classifier, and its loss is the Bayes rate [45].
Since the same learner generates different models for dif-
ferent training sets, L(t, y) is a function of the training set.
This dependency can be alleviated by averaging over train-
ing sets. Let D be a set of training sets. In this case the
quantity of interest is the expected loss ED,t[L(t, y)], where
the expectation is taken with respect to t and the training sets
in D (i.e., with respect to t and the predictions y = f(x) pro-
duced for x by applying the learner to each training set in D).
Having this formulation in place, it is possible to define the
main prediction for a loss function L and set of training sets
D as:

yL,D
m = argmin

y′
ED[L(y, y

′)] (1)

Therefore, the main prediction is the value y′ that has the
minimum average loss relative to all the predictions. It can
be easily derived from this definition that in the case of
squared loss function the main prediction is the mean of the
predictions, in the case of absolute loss it is the median, and
in the case of zero-one loss it is the mode (the prediction
with the highest frequency) [43]. Proceeding further in this
path, it is possible to define the bias of a learner on a point
xo as B(xo) = L(y∗, ym). Therefore, the bias is the loss
incurred by the main prediction with respect to the optimal
prediction. Similarly, the variance of a learner on a point
xo can be defined as V(xo) = ED[L(ym, y)]. Therefore,
the variance is the average loss incurred by predictions with
respect to the main prediction. Finally, the noise at point
xo is N(xo) = Et[L(t, y∗)]. Therefore, noise is the com-
ponent of the loss that cannot be avoided, and is incurred
independently of the learning algorithm. It is also important
to note that bias and variance can be averaged over all points
to produce the average bias Ex[B(x)] and the average vari-
ance Ex[V(x)]. Building on the previous definitions, it was
shown in [43] that, considering a test point xo for which the
true prediction is t, a learner that predicts y given a training
set in D, and an arbitrary loss function L, then the following
decomposition of ED,t[L(t, y)] holds:

ED,t[L(t, y)] = c1Et[L(t, y∗)]+[L(y∗, ym)]+c2ED[L(ym, y)]
(2)

or,
ED,t[L(t, y)] = c1N(x) +B(x) + c2V (x) (3)

There are several important observations stemming from
the analysis of [43]. If we restrict our analysis only on
the part that is applicable for classification problems and
consequently the zero-one loss function the most important
observation is that specifically for zero-one loss, variance
can have a subtractive effect and this is derived from a self-
consistent definition of bias and variance for zero-one and
squared loss, even if the variance itself remains positive [43].
The fact that variance is additive in unbiased examples but
subtractive in biased ones has significant implications: if a
learner is biased on a given test point, increasing variance
can decrease loss.

This behavior is fundamentally different from that of
squared loss, but is obtained with the same definitions of
bias and variance, purely as a result of the different prop-
erties of zero-one loss. In effect, when zero-one loss is the
evaluation criterion, there is a much higher tolerance for
variance than if the bias-variance decomposition was strictly
additive, because the increase in average loss caused by vari-
ance on unbiased examples is (partly) offset by its decrease
on biased ones. However, on multiclass problems not all
variance on biased points contributes to reducing loss. Con-
sidering all training sets for which y 6= ym, only some have
y = y∗, and it is only in these points that loss is reduced.
Therefore, the negative effect of variance is exacerbated as



the number of classes increases and this can be an important
factor in the selection of models or model parameters.

3.1. Bias/variance tradeoff in ensembles

A lot of effort has been focused in explaining formally why
ensemble methods work so well. One of the main concepts
[16] used to explain why the Bagging ensemble method re-
duces zero-one loss (typical for classification) was that of an
order-correct learner. Let D be a set of training sets. In this
case the quantity of interest is the expected loss ED,t[L(t, y)],
where the expectation is taken with respect to the value of
the true function t and the training sets in D (i.e., with re-
spect to t and the predictions y = f(x) produced for x by
applying the learner to each training set in D). A learner is
order-correct on a point xo if and only if ∀y 6=y∗PD(y) <
PD(y∗). Breiman [16] showed that Bagging transforms an
order-correct learner into a nearly optimal one. We note that
order-correctness and bias are closely related: a learner is
order-correct on a point xo if and only if B(xo) = 0 in the
case of zero-one loss. The proof can be derived directly from
the definitions, considering that ym for zero-one loss is the
most frequent prediction. Schapire et al. [46] proposed an
explanation for why the Boosting ensemble method works in
terms of the notion of margin. For algorithms like Bagging
and Boosting, which generate multiple hypotheses by apply-
ing the same learner to multiple training sets, their definition
of margin M on a point xo for a two class problem can be
expressed as follows:

M(xo) = PD(y = t)− PD(y 6= t) (4)

for which a positive margin indicates a correct classification
by the ensemble, and a negative one an error. More recently
[43] it was proven that the notion of margin is closely related
to the bias-variance decomposition and specifically, the mar-
gin of a learner on a point xo can be formulated in terms of
its zero-one bias and variance as:

M(xo) = ±[2B(xo)− 1][2V (xo)− 1] (5)

with the positive sign applicable if y∗ = t and the negative
sign applicable otherwise. Therefore the two main formal
explanations of why ensemble methods such as Bagging or
Boosting work are closely related. Nevertheless, each of the
three algorithms that are compared in this paper is making
different assumptions and aims at a different bias-variance
tradeoff.

4. THREE CATEGORIES OF TREE-BASED
ENSEMBLE METHODS

Perhaps the most well known of the tree-based ensemble
methods is the Random Forest (RF) algorithm, which was
introduced by Breiman [10]. It utilizes both Bagging and

random attribute subset selection for achieving diversity be-
tween the weak learners. As indicated by various empirical
studies [10], [47]), RFs have emerged as serious contesters
to state-of-the-art methods such as Boosting [48] and Sup-
port Vector Machines [49]. This of course does not mean
that Random Forests consistently outperform the previous
algorithms, only that they are on average in a similar perfor-
mance level (arguably even a bit higher [7]) with the same or
less computational cost. Some studies have shown that SVM
ensembles can even outperform Random Forests, but given
the computational complexity of training non-linear SVMs,
training an SVM ensemble with a large number of samples
per class can have orders of magnitude higher computational
cost.

RFs are using as a weak learner the basic Classifica-
tion and Regression Tree (CART). This weak learner has the
property of being very fast to train while also having small
bias. It is however unstable as small variations in the train-
ing set can result in very different trees. The idea of the
RF algorithm is to compensate for this by introducing ran-
domization and then averaging multiple predictors to reduce
variance, with a small increase in bias. The randomization
in RF is based in two factors: for each tree a bootstrap of
the data (typically 2/3 of the full dataset) is used for training.
Furthermore, the split in every node is not performed con-
sidering the full set of features but only a random subset of
them (typically

√
k for classification and k/3 for regression

problems, where k is the total number of features). Among
these features that are randomly selected for a given node,
the one that provides the best split in terms of a selected met-
ric (typically Gini index or entropy) is chosen. The RF trees
are never pruned in an attempt to minimize bias. It should be
noted that the algorithm falls to the special case of Bagged
Trees if the number of features considered in each node is set
to the full feature set. Table 1 summarizes the RF algorithm.

The success of RF in achieving significant reduction
in variance and improving accuracy has inspired the Extra
Trees (ET) algorithm [50] as an effort to push this idea fur-
ther to even more drastically reduce variance. Similarly to
the RF algorithm, it trains unpruned CART trees in a classic
top-down method. However, it has two key differences: the
nodes are split selecting cut-points completely at random
and it uses the entire training set (instead of a bootstrap) to
grow each tree. From a bias-variance point of view, the ran-
dom selection of cut-points coupled with averaging should
be able to more strongly reduce variance compared to the RF
algorithm. On the other hand, it introduces more bias; this is
related to the second difference, where the entire training set
is used to grow trees as a way to reduce the increase in bias.
It has been proven that the ET algorithm can asymptotically
approximate piecewise multi-linear smooth functions as the
number of trees is increasing to infinity, while RF remains
piecewise constant and non-smooth even as the number of



Table 1. The Random Forest Algorithm
Step 1. Setting hyper-parameters. Set the hyper-

parameters of the RF algorithm, e.g., number of
trees T and value of the feature set splitting vari-
able mtry

Step 2. Resampling. Sample the training data (random
sampling with replacement) to create T different
subsets of the data, each of size N, with N approx-
imately 2/3 of the complete training set [10].

Step 3. Training the decision trees.

• For a given tree node select a subset of pre-
dictor variables at random from the set of all
the predictor variables.

• Use the predictor variable that provides the
best split, according to the selected objec-
tive function to do a binary split on that
node.

• At the next node, select a different set of
variables at random from all predictor vari-
ables and repeat.

Step 4. Classifying. After the training is done and the al-
gorithm operates in classification mode, when a
new input is entered it is run down all of the trees.
If the range of valid predictions is C = {1, ..., C}
where C is the total number of classes, then the
estimated probability of predicting class y ∈ C for
a given point xo is:

p(y|xo) =
1

T

T∑
t=1

pt(y|xo)

with pt(y|xo) being the estimated density of class
labels on the leaf of the tth tree [10].

trees reaches infinity. Table 2 summarizes the ET algorithm.

The third tree ensemble algorithm, Gradient Boosted Re-
gression Trees (GBRT) [15], has a completely different tar-
get as it aims to reduce bias. In this algorithm an ensemble
of trees is also trained, but these are not unpruned CART
trees with small bias that are averaged to reduce variance as
in the other methods. Instead these trees have a relatively
small, predefined maximum depth (typically 3-8) and high
bias. Furthermore, they are not trained in parallel but se-
quentially, and in every iteration the new tree to be added
targets explicitly the samples that are responsible for the cur-
rent remaining regression error. Due to its iterative nature,
the GBRT aglorithm can approximate very complex func-
tions resulting in models with low bias. On the other hand,

Table 2. The Extra Trees Algorithm
Step 1. Setting hyper-parameters. Set the hyper-

parameters of the ET algorithm, e.g., number of
trees T and value of the feature set splitting vari-
able mtry

Step 2. Training the decision trees.

• For a given tree node select a subset of pre-
dictor variables at random from the set of all
the predictor variables.

• For each predictor variable in the subset, if
stop split conditions are not met, draw uni-
formly a random cut-point ac.

• From the set of possible splits that are de-
rived using the random cut-points select the
one that maximizes the score of the objec-
tive function.

• At the next node, select a different set of
variables at random from all predictor vari-
ables and repeat.

Step 3. Classifying. After the training is done and the al-
gorithm operates in classification mode, when a
new input is entered it is run down all of the trees.
If the range of valid predictions is C = {1, ..., C}
where C is the total number of classes, then the
estimated probability of predicting class y ∈ C for
a given point xo is:

p(y|xo) =
1

T

T∑
t=1

pt(y|xo)

with pt(y|xo) being the estimated density of class
labels on the leaf of the tth tree [10].

the algorithm under certain conditions can be fragile to noise
and even more to outliers. Table 3 summarizes the GBRT al-
gorithm.

4.1. Effect of hyper-parameters from a bias-variance
perspective

Following the formal presentation of the three algorithms,
it is important to discuss the number of hyper-parameters
that can be tuned and their effect from a bias-variance point
of view. This is required in order to better understand the
tradeoffs available for each algorithm, as well as to explain
their behavior in the experimental section.

Starting from the Random Forest algorithm, the hyper-
parameters that mostly affect its performance are the num-
ber of features to use for doing node splits and the number



Table 3. The Gradient Boosted Regression Trees Algorithm
Step 1. Setting hyper-parameters. Set the hyper-

parameters of the GBRT algorithm, e.g., number
of trees T, maximum depth of the trees, and value
of the feature set splitting variable mtry

Step 2. Training the trees.

• Set initial guess to the value of the depen-
dent variable.

• ’Upweight’ examples that the existing
model poorly predicts.

• Compute the residuals based on the cur-
rent model rmi = yi − fm−1(xi) where i
refers to observations. It should be noted
that fm−1 refers to the sum of all previous
regression trees.

• Fit a regression tree (with a fixed depth) to
the residuals.

• For each terminal node of the tree, compute
the average residual. The average value is
the estimate for residuals that fall in the cor-
responding node.

• Add the regression tree of the residuals to
the current best model fm.

Step 3. Classifying. After the training is done and the al-
gorithm operates in classification mode, when a
new input is entered it is run down the final model
fM (comprised by all the trees) to generate the
prediction.

of trees in the ensemble. Regarding the first one, as a heuris-
tic Breiman recommends

√
k for classification and k/3 for

regression problems, where k is the total number of features.
If sufficient data are available the parameter can be chosen
using cross-validation, often resulting in a (typically modest)
improvement compared to the heuristic. Generally, a small
number favors more aggressive variance reduction at the ex-
pense of more bias. Regarding the number of trees, as a bag-
ging variation RF benefits from them without a danger of
overfitting, although diminishing returns and computational
costs are the limiting factors. Note that in some cases addi-
tional options that are not part of the canonical Random For-
est are provided, e.g. enabling tree pruning (or setting a max-
imum tree depth) can result in further variance reduction at
the expense of more bias. A similar effect of favoring more
variance reduction can be achieved with setting the minimal
samples allowed per leaf. Note that if cross-validation is to
be used for defining more than one hyper-parameters, then

nested cross-validation is required.
The second case is the Extra Trees algorithm and since

it is inspired by the RF algorithm it is also characterized by
similar hyper-parameters (number of features to consider for
each node split, number of trees, maximum tree depth, and
minimal samples allowed per leaf). Due to the intrinsic me-
chanics of the algorithm, setting the parameters to the same
values as for RF will typically result in a model that favors
less variance at the expense of more bias.

Finally, the GBRT algorithm as a tree-based algorithm
is also having similar hyper-parameters, which however of-
ten result in different behavior compared to the other algo-
rithms. The first of these hyper-parameters is the number of
trees: in contradistinction to RF and ET, a very large num-
ber of trees can result to overfitting (depending also on the
amount of training data, noise level, etc.) while a very small
number will result to underfitting (both of these effects ap-
pear due to the iterative nature of the algorithm). The max-
imum tree depth is also a lot more critical for GBRT, espe-
cially for preventing overfitting. Together with the number
of trees and the portion of the training set that is received by
each tree, these three are typically the hyper-parameters that
mostly affect performance and need to be tuned by nested
cross-validation. Finally, hyper-parameters like the number
of features to consider for each node split and minimal sam-
ples allowed per leaf have the same effect as for the previous
algorithms, favoring reduction of variance at the expense of
bias.

4.2. Algorithm summary and best practices

Following the introduction of the algorithms and the descrip-
tion of their hyper-parameters, we summarize their key prop-
erties in Table 4. The goal of this summary is on one hand
to capture the basic mechanics of the algorithms in a way
that makes any tradeoffs transparent, as well as to guide the
decision process based on desired properties of the solution.
From the table it is once again clear that the two first al-
gorithms are quite similar in nature, with the Extra Trees
algorithm favoring additional variance reduction at the ex-
pense of bias compared to a similarly configured Random
Forest (i.e., same number of features checked per node, no
restrictions on maximum tree depth). Both of the algorithms
deal well with noise (typically Extra Trees does excellent in
this case) and with outliers (RFs bootstrap-based training per
tree offers it an edge here). Furthermore, both algorithms
are robust to the hyper-parameter choices, with ET being
slightly more stable in some cases. A disadvantage that both
algorithms share is the poor interpretability of the resulting
model, especially when hundreds of trees are involved.

The third algorithm, as can also be seen from the ta-
ble, has the least bias and with proper setting of its hyper-
parameters can achieve an excellent bias-variance tradeoff
for most datasets. However, the model typically depends
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Random
Forest

Medium/Low V
Medium B

CART
(parallel)

Best cut on random
feature subset 2/3 Medium/High Medium/High Medium/Low Poor

Extra
Trees

Lowest V
Medium/High B

CART
(parallel)

Best random cut on
random feature subset Full High Medium Low Poor

GBRT
Medium/High V
Lowest B

CART
(iterative)

Max depth sequential
CART (possibly on
random feature subset) Config. Medium Medium/Low Medium/High Good

Table 4. Algorithm summary and comparison

heavily on the values of these hyper-parameters and poor
choices can easily result to underfitting or (more commonly)
overfitting. Especially maximum tree depth, number of
trees, and percentage of the training set used by each tree
are very important for controlling the bias/variance tradeoff
and should be selected by nested cross-validation. A big ad-
vantage of the algorithm is that its iterative additive training
results in a model with relatively good interpretability (at
least compared to other ensemble models), although inter-
preting it is still not as trivial as interpreting a single CART
or a gradient boosting model that is not using trees as weak
learners. The biggest drawback of the GBRT however is its
fragility to outliers, especially in cases that the trees see the
entire training set. Therefore, it is a good policy to limit the
size of the training set used by each tree when the possibility
of having outliers in the training set is high.

5. EXPERIMENTAL RESULTS

While providing the necessary theory behind different en-
semble learning methods the main focus of the paper is their
application to remote sensing use cases. In this paper we pro-
vide results for three datasets - the IEEE GRSS 2013 Data
Fusion Contest data (University of Houston campus) [11],
Indian Pines, and the IEEE GRSS 2014 Data Fusion Contest
dataset (Thetford Mines in Qubec).

The three datasets that have been selected for evaluat-
ing the algorithms in this version are characterized by com-
pletely different properties, so that a large spectrum of cases
is assessed. The IEEE GRSS 2013 Data Fusion Contest
dataset captures a challenging and varied semi-urban envi-
ronment with 15 classes. It is well suited for evaluating the
ability of the algorithms to use complementary sources of
information (hyperspectral and LiDAR) in a classic data fu-
sion setup, as well as to deal with noise on part of the input
space (due to the existence of a shadow). For the University
of Houston we used the same training set as in the contest.
It has been shown in the past that fusing LiDAR and hy-

perspectral imagery [51, 52, 53] can successfully combine
the complementary information of those two data sources in-
cluding also the use of hierarchical classifiers and ensemble
methods [54, 55].

Indian Pines - despite being quite old - is also a challeng-
ing dataset of an agricultural area with 16 different classes
of crops. Since most of the classes are different types of
crops, this dataset is well suited to assess the performance
of the algorithms with different feature extraction schemes.
For Indian Pines the training set consists of 50 samples for
each class that have been randomly chosen from the refer-
ence data, except for classes alfalfa, grass/pasture-mowed,
and oats that have very few members. Thus, only 15 sam-
ples for each of these classes were randomly picked to be
used as training samples and all other samples composed the
test set.

Finally, the IEEE GRSS 2014 Data Fusion Contest
dataset is also capturing a diverse environment and is very
interesting from a data fusion perspective as it combines two
data sources with a different resolution. Specifically, this
dataset involves two modalities, a coarser-resolution long-
wave infrared (LWIR, thermal infrared) hyperspectral part
and a fine-resolution visible (VIS) wavelength range part.
The two sources cover an urban area near Thetford Mines
in Qubec, Canada, and were acquired and were provided
for the Contest by Telops Inc. (Canada). The ground truth
includes 7 landcover classes and the mapping is performed
at the higher of the two resolutions. For the Thetford Mines
we again used the same training set as in the contest.

For each of the two first datasets, we show the overall
accuracy of the three algorithms as we progressively add
more sophisticated features and domain-level expertise in
the problem. Specifically, as a first step we start from the raw
spectral bands (plus LiDAR for the University of Houston
dataset). Then we consider PCA components, followed by
MNF components coupled with some synthetic features (3
vegetation indices and water absorption) [11]. In the fourth
step we consider the same setup, adding also a multitude



of segmentation maps [9]. Then we perform a feature pre-
selection step using RF feature importance [9] before apply-
ing each of the algortihms on the selected features with posi-
tive influence (MNF+Synth+SelSegm+L). Finally, post pro-
cessing consisting of Markov Random Field (MRF) segmen-
tation (plus man-made structure correction for the Houston
University dataset) is applied on the outcome of classifica-
tion [11], [38]. The latter is done to have a framework that
allows to include object information in the classifier [56].

It should be noted that each of the first five lines of the
table fully describes the used features in the respective step,
e.g., when transitioning from PCA to MNF we replace the
PCA with MNF and do not add them on top of the previous
features, unless this is explicitly captured in the description.
For example MNF+Synth+SelSegm+L is the same feature
set as the previous line but with feature selection for the
segmentation maps. The selection of features follows the
following reasoning: MNFs have been shown to be supe-
rior to PCA as dimensionality reduction method, especially
in cases where the data are noisy and have been used suc-
cessfully in various remote sensing setups [57], [58]. With
respect to the feature selection, unsupervised feature selec-
tion using Random Forests has shown also promising results
for remote sensing (e.g., [9]), while also being a low com-
putational cost method that fits in the tree-based ensemble
classification approach we are using in this paper.

For the MRF segmentation we considered the Iterated
Conditional Modes algorithm [59] assuming Gaussianity on
the class-conditional probability density functions. This ap-
proach allows to perform a post processing in which objects
of unreasonable size can be filtered out. With respect to
the application of post-processing and MRFs, we refer the
reader to our previous works in [11], [38] where also the re-
lation of MRF to regularization is discussed.

Houston University RF ET GBRT
Raw+L 75.8 75.0 76.7
PCA+L 85.8 86.8 83.4
MNF+Synth+L 87.9 86.0 85.1
MNF+Synth+Segm+L 80.9 83.0 78.2
MNF+Synth+SelSegm+L 90.6 87.6 85.7
+Post Processing 94.4 93.3 94.6

Table 5. Algorithm comparison as we progressively add
more domain knowledge: Results for Houston University

From the results provided in Tables 5 and 6 the first thing
we can observe is that while transitioning from raw features
to PCA and later to MNF brings little benefit for Indian
Pines, it has a significant benefit for the University of Hous-
ton, where there are a lot of noisy bands, especially under the
shadow. With regard to the performance of the algorithms
for the two first rows of the tables, we can see that for the
University of Houston the performance is comparable, while

Indian Pines RF ET GBRT
Raw 73.4 73.8 68.2
PCA 73.1 71.7 68.9
MNF+Synth 73.8 73.6 69.8
MNF+Synth+Segm 92.9 95.0 94.7
MNF+Synth+SelSegm 94.8 94.9 93.9
+Post Processing 96.3 95.3 95.1

Table 6. Algorithm comparison as we progressively add
more domain knowledge: Results for Indian Pines

for the Indian Pines RF performs best, followed by ET, and
then GBRT.

Adding the segmentation maps in (without feature pre-
selection) results in significant performance improvement
for Indian Pines, while for Houston University the perfor-
mance degrades across all algorithms. This is probably due
to the fact that a lot of the segmentation maps are distorted
by the presence of the shadow therefore being poor pre-
dictors; interestingly ET is significantly more robust to this
effect, due to the random cut-points property that allows ran-
domization to partially average out the skewed predictors.

When we also enable feature pre-selection (using RF for
homogeneity) the results improve significantly for Houston
University and more moderately also for Indian Pines. In this
setup the performance of the three algorithms is similar, with
a small advantage for RF in University of Houston. Adding
the post-processing step results in very similar performance
for RF and GBRT in Houston (followed by ET), while in In-
dian Pines RF is doing better and the other two algorithms
are very close. An interesting effect is that on average GBRT
is gaining a lot more from the post-processing step than the
other two algorithms, especially for Houston. This is natural
if we consider the Markov Random Field segmentation as a
regularization post-classification step, where variance is re-
duced [38]. This is then indeed expected to benefit more the
algorithm that favors solutions with smaller bias and more
variance, as GBRT is doing.

For the third dataset, because of its increased size, some
of the features are very computationaly heavy to derive (e.g.,
the abundance maps) so for this case we only show the result
that uses as features two sets of KMNF components (with
and without regularization), the visual bands, and some syn-
thetic features (gradients and segmentation maps). The re-
sults for three algorithms, after the classification and the post
processing step, are presented in Table 7. It is clear that for
this dataset a well-tuned GBRT has the advantage. Note that
for the last two rows of the table, for the GBRT algorithm the
maximum depth per tree and the portion of train samples that
each tree is receiving are selected by nested cross-validation
in order to find a good bias/variance tradeoff.



Thetford Mines RF ET GBRT
MNF+Synth+SelSegm (T=100) 84.1 84.8 84.4
+Post Processing (T=100) 89.5 89.0 89.8
MNF+Synth+SelSegm (T=200) 84.4 85.2 86.2
+Post Processing (T=200) 90.0 89.7 91.4
MNF+Synth+SelSegm (T=500) 84.6 85.5 88.1
+Post Processing (T=500) 90.7 90.1 93.9

Table 7. Algorithm comparison as we progressively add
more trees in the ensemble: Results for Thetford Mines

5.1. Behavior of the algorithms under difficult condi-
tions

The effect of difficult conditions like outliers, noise, and
small training sets in supervised classification has been stud-
ied extensively in the broader machine learning domain (al-
though perhaps less so for the case of some ensemble meth-
ods). However, in remote sensing many of the works that
explicitly deal with noise and outliers are focusing on the
problems of spectral unmixing, image reconstruction, and
change detection (e.g., [60]) and relatively few works focus
on the classification aspect of the problem (e.g., [61], [62]).

In order to evaluate the behavior of the considered en-
semble algorithms under challenging conditions, we include
results highlighting the effects of the training set size, noise
level, and outliers. Specifically, we have conducted three ad-
ditional experiments. In the first of them, we use the Houston
University dataset to estimate the effect of the training set
size, as we reduce the number of training samples by 50%,
75%, and 95% (under the constraint that each class has at
least 10 training samples). In the second experiment, using
again the Houston University dataset, we keep the number of
training samples unmodified but we randomly convert 5%,
10%, and 20% per cent of them to a different class, gener-
ating outliers (again the constraint is that every class has at
least 10 genuine samples). For the two first experiments we
use the Houston dataset since it is easy to meet the 10 gen-
uine samples constraint, compared for example to the Indian
Pines case (especially if we applied 75% and 95% or un-
dersampling there). The third experiment aims at studying
the effect of zero mean Gaussian White Noise and for this
case we use Indian Pines since Houston University is already
characterized by a significant amount of non-Gaussian noise,
due to the presense of the shadow of a cloud. In each of these
three experiments, we use as features the MNF components,
synthetic features, a selection of segmentation maps, and Li-
DAR, as described previously (MNF+Synth+SelSegm+L).

In Table 8 we present the classification results for RF,
ET, and GBRT with only part of the training data (under the
contraint that each class has at least 10 training samples) fol-
lowed by apllication of MRF segmentation and man-made
structure correction.

Houst. Univ. RF ET GBRT
Clas. (50%) 80.0± 0.77 82.1± 0.58 75.4± 1.11
+Post Pr. 82.6± 1.05 84.8± 0.92 76.6± 1.76
Clas. (75%) 79.2± 0.81 80.7± 0.73 74.1± 1.28
+Post Pr. 82.0± 2.04 82.4± 1.11 77.3± 2.87
Clas. (95%) 64.1± 0.94 70.3± 0.80 65.2± 1.57
+Post Pr. 66.2± 2.77 72.8± 1.46 68.0± 3.05

Table 8. Algorithm comparison as we reduce the size of the
training set: Results for Houston University

Since the case of reduced training set size is of particular
practical importance for hyperspectral image classification
due to the high cost of acquiring labeled samples, it makes
sense to study in more detailed what is the bahavior of each
algorith in this setting, evaluating visually also the quality of
the classification outcomes. Figure 1 shows the final classifi-
cation outcome using the hyperspectral and LiDAR data that
was provided in the 2013 contest with optimized RF (using
the full training set) and is provided as reference (RF result
from the last line of Table 5). Figures 2, 3, and 4 show that
all algorithms face significant problems under the very chal-
lenging conditions of getting only 5% of the training data.
However, RF is able to keep a reasonable performance in the
areas that are not covered by the shadow of the cloud and ET
is still able to get correctly some of the big structures (e.g.,
the highway and some big commercial buildings, etc.) even
under the cloud.

Houst. Univ. RF ET GBRT
Clas. (5%) 80.1± 0.53 80.7± 0.39 77.5± 0.57
+Post Pr. 83.7± 1.07 85.2± 0.94 82.2± 1.21
Clas. (10%) 79.4± 0.77 78.9± 1.02 76.4± 1.11
+Post Pr. 81.2± 1.80 80.6± 1.38 80.3± 2.01
Clas. (20%) 78.3± 1.46 76.8± 1.62 74.0± 1.93
+Post Pr. 80.4± 2.12 79.0± 2.29 77.6± 2.58

Table 9. Algorithm comparison as we add outliers: Results
for Houston University

Ind. Pines RF ET GBRT
Clas. (10−5) 87.2± 0.46 88.0± 0.24 86.8± 0.64
+Post Pr. 89.5± 0.85 90.5± 0.59 92.4± 0.77
Clas. (10−4/2) 78.0± 0.71 78.4± 0.47 75.3± 1.32
+Post Pr. 81.1± 1.27 83.5± 1.06 84.0± 1.22
Clas. (10−4) 71.2± 1.38 72.9± 1.03 68.6± 1.91
+Post Pr. 78.3± 2.52 80.4± 2.37 80.1± 1.64

Table 10. Algorithm comparison as we progressively add
more white Gaussian noise with the specified variance: Re-
sults for Indian Pines



Fig. 1. Classification result for Houston University using RF, segmentation with MRF, and man-made structure correction

Fig. 2. Classification result for Houston University using 95% downsampled RF, segmentation with MRF, and man-made
structure correction

Fig. 3. Classification result for Houston University using 95% downsampled GBRT, segmentation with MRF, and man-made
structure correction

Fig. 4. Classification result for Houston University using 95% downsampled ET, segmentation with MRF, and man-made
structure correction



Starting the analysis of the numeric results from the re-
duced training set experiment, we can further validate the vi-
sual impression that the Extra Trees algorithm is doing con-
sistently better compared to the other two and GBRT is the
worse on average. Furthermore, while the Random Forest
does relatively well with moderate train sample reduction,
in the last two rows of the table (reduction of 95%) it is
even worse than the GBRT. This is possibly explained by
the nature of the algorithms, since ET algorithm is focusing
on reducing variance (very important for small training sets)
while still using the entire set to train each tree. Apparently,
with 95% reduction there are hardly enough training sam-
ples available for the RF trees to reach sufficient depth to
have low bias and at the same time to exploit randomization
in sampling for reducing variance.

For the outlier experiment, GBRT is the least perform-
ing algorithm. Between the other two, ET is better when the
number of outliers is small, but RF is better when the number
of outliers is high. These results are stemming directly from
the mechanics of the algorithms, with GBRT being fragile to
outliers since it repeatedly tries to find a way to classify them
(eventually overfitting them to some extent). For the two
other algorithms, the RF uses randomized sampling for each
tree in conjunction with randomized feature selection for the
node splits, which can result in better control of numerous
outliers, compared to the fully randomized cut-points selec-
tion of ET, that seems better suited to a smaller number of
outliers since it only operates on the features and not on the
training samples (therefore the outliers will always appear in
all trees).

In the third experiment, where zero-mean White Gaus-
sian Noise with different variances is added to the entire fea-
ture space, the performance of the three algorithms is com-
parable across the different noise levels, with a small advan-
tage for the ET algorithm. It is interesting to note that, while
GBRT is typically the least performing of the three when
considering only the classification part, it is again typically
improving more than the other two algorithms from post-
processing, for the reasons that were mentioned previously.
It should be noted that this effect is very clear for the partic-
ular dataset, since post-processing segmentation is the only
step applied here, while for the University of Houston the
human structure correction step that is done in addition is
favoring algorithms that have a high initial performance for
the majority of the pixels in each of the extracted structures
and this may balance out the described effect.

Another interesting observation is that in the Gaussian
noise setting the good complementarity between GBRT and
MRF post-processing can also be observed from the standard
deviation of the final result, which is comparable and in some
cases less than the respective standard deviation of the final
result produced by the other two methods. On the other hand,
in the previous setting where outliers were injected, an erro-
neous classification result from GBRT directly translates to

a bad final (post-processed) outcome. Therefore, in the cases
that the outliers distorted classification the final outcome was
significantly worse compared to cases that the outliers had
less impact, thus resulting also in higher standard deviation
for GBRT compared to the other two methods.

6. CONCLUSIONS

In this paper we focused on the use of ensemble methods in
remote sensing. We briefly described relevant state of the
art in ensemble learning, both inside and outside the remote
sensing community and elaborated on the theoretical basis of
this research field. Following this introduction, we provided
a detailed review of three of the most relevant and prominent
techniques in ensemble learning, namely the Random Forest,
Extra Trees and the Gradient Boosted Regression Trees al-
gorithms. All algorithms were assessed in terms of their the-
oretical properties as well as applicability for remote sensing
use cases. Special care was to taken to describe the effect of
hyper-parameters and other configuration choices in a way
that is useful for the practitioner in the field of remote sens-
ing. Finally, in the experimental section we compared the
performance of the algorithms in challenging remote sensing
datasets with different properties. We demonstrated state of
the art performance while discussing again the reasons that
certain algorithms, due to their mechanics, are in advantage
or disadvantage under certain conditions.

7. ACKNOWLEDGEMENT

The authors would like to thank the Hyperspectral Image
Analysis group and the NSF Funded Center for Airborne
Laser Mapping (NCALM) at the University of Houston for
providing the data sets used in this study, and the IEEE
GRSS Data Fusion Technical Committee for organizing the
2013 Data Fusion Contest.

8. REFERENCES

[1] R. Polikar, “Ensemble based systems in decision making,”
Circuits and Systems Magazine, IEEE, vol. 6, no. 3, pp. 21–
45, Third 2006.

[2] D. Opitz and R. Maclin, “Popular ensemble methods: An
empirical study,” Journal of Artificial Intelligence Research,
vol. 11, pp. 169–198, 1999.

[3] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision
forests: A unified framework for classification, regression,
density estimation, manifold learning and semi-supervised
learning,” Found. Trends. Comput. Graph. Vis., vol. 7, no.
2&#8211;3, pp. 81–227, Feb. 2012.

[4] A. Verikas, A. Gelzinis, and M. Bacauskiene, “Mining data
with random forests: A survey and results of new tests,” Pat-
tern Recognition, vol. 44, no. 2, pp. 330–349, 2011.



[5] R.M. Bell and Y. Koren, “Lessons from the netflix prize chal-
lenge,” ACM SIGKDD Explorations Newsletter, vol. 9.2, pp.
75–79, 2007.

[6] R.M. Bell, Y. Koren, and C. Volinsky, “All together now: A
perspective on the netflix price,” Chance, vol. 23.1, pp. 24–
29, 2010.

[7] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and
Dinani Amorim, “Do we Need Hundreds of Classifiers to
Solve Real World Classification Problems?,” Journal of Ma-
chine Learning Research, vol. 15, pp. 3133–3181, 2014.

[8] D. Wolpert, “Stacked generalization,” Neural Networks, vol.
5 (2), pp. 241–259, 1992.

[9] A. Merentitis, C. Debes, R. Heremans, and N. Frangiadakis,
“Automatic fusion and classification of hyperspectral and li-
dar data using random forests,” in Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium,
2014.

[10] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[11] C. Debes, A. Merentitis, R. Heremans, J. Hahn, N. Fran-
giadakis, T. van Kasteren, W. Liao, R. Bellens, A. Pizurica,
S. Gautama, W. Philips, S. Prasad, Q. Du, and F. Pacifici,
“Hyperspectral and LiDAR data fusion: Outcome of the 2013
GRSS Data Fusion Contest,” IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, vol.
7, pp. 2405–2418, June 2014.

[12] Taskin Kavzoglu and Ismail Colkesen, “An assessment of
the effectiveness of a rotation forest ensemble for land-use
and land-cover mapping,” International Journal of Remote
Sensing, vol. 34, no. 12, pp. 4224–4241, 2013.

[13] Junshi Xia, Peijun Du, Xiyan He, and J. Chanussot, “Hyper-
spectral remote sensing image classification based on rotation
forest,” Geoscience and Remote Sensing Letters, IEEE, vol.
11, no. 1, pp. 239–243, Jan 2014.

[14] A. Samat, P. Du, M.H.A. Baig, S. Chakravarty, and L. Cheng,
“Ensemble learning with multiple classifiers and polarimetric
features for polarized sar image classification,” Photogram-
metric Engineering and Remote Sensing, vol. 80(3), pp. 239–
251, 2014.

[15] Jerome H. Friedman, “Greedy function approximation: A
gradient boosting machine,” Annals of Statistics, vol. 29, pp.
1189–1232, 2000.

[16] L. Breiman, “Bagging predictors,” Machine Learning, vol.
24, pp. 123–140, 1996.

[17] Robert T Clemen, “Combining forecasts: A review and anno-
tated bibliography,” International journal of forecasting, vol.
5, no. 4, pp. 559–583, 1989.

[18] L.K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 10, pp. 993–1001, 1990.

[19] R.E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197–227, 1990.

[20] Bradley Efron and B Efron, The jackknife, the bootstrap and
other resampling plans, vol. 38, SIAM, 1982.

[21] A.M. Zoubir and D. R. Iskander, Bootstrap Techniques for
Signal Processing, Cambridge University Press, 2004.

[22] Yoav Freund and Robert E Schapire, “A desicion-theoretic
generalization of on-line learning and an application to boost-
ing,” in Computational learning theory. Springer, 1995, pp.
23–37.

[23] J. Oh, M. Laubach, and A. Luczak, “Estimating neuronal
variable importance with random forest,” in Bioengineering
Conference, 2003 IEEE 29th Annual, Proceedings of, March
2003, pp. 33–34.

[24] J. Li, H. Liu, and L. Li, “Diagnostic rules induced by an
ensemble method for childhood leukemia,” in Bioinformat-
ics and Bioengineering, 2005. BIBE 2005. Fifth IEEE Sym-
posium on, Oct 2005, pp. 246–249.

[25] L. Vibha, G.M. Harshavardhan, K. Pranaw, P. Deepa Shenoy,
K.R. Venugopal, and L.M. Patnaik, “Statistical classification
of mammograms using random forest classifier,” in Intelli-
gent Sensing and Information Processing, 2006. ICISIP 2006.
Fourth International Conference on, Oct 2006, pp. 178–183.

[26] V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, and
B. Feuston, “Random forest: A classification and regression
tool for compound classification and QSAR modeling,” Jour-
nal of Chemical Information and Computer Sciences, vol. 43,
pp. 1947–1958, 2003.

[27] A. Bosch, A. Zisserman, and X. Muoz, “Image classifica-
tion using random forests and ferns,” in Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on,
Oct 2007, pp. 1–8.

[28] A.Z. Kouzani, S. Nahavandi, and K. Khoshmanesh, “Face
classification by a random forest,” in TENCON 2007 - 2007
IEEE Region 10 Conference, Oct 2007, pp. 1–4.

[29] S. Bernard, S. Adam, and L. Heutte, “Using random forests
for handwritten digit recognition,” in Document Analysis and
Recognition, 2007. ICDAR 2007. Ninth International Confer-
ence on, Sept 2007, vol. 2, pp. 1043–1047.

[30] W. Yan, “Application of random forest to aircraft engine fault
diagnosis,” in Computational Engineering in Systems Ap-
plications, IMACS Multiconference on, Oct 2006, vol. 1, pp.
468–475.

[31] S. Boukir, Li Guo, and N. Chehata, “Classification of re-
mote sensing data using margin-based ensemble methods,” in
Image Processing (ICIP), 2013 20th IEEE International Con-
ference on, Sept 2013, pp. 2602–2606.

[32] Zhongm P. and R. Wang, “A multiple conditional random
fields ensemble model for urban area detection in remote
sensing optical images,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 45, no. 12, pp. 3978–3988, Dec
2007.

[33] Jon Atli Benediktsson, Jocelyn Chanussot, and Mathieu Fau-
vel, “Multiple classifier systems in remote sensing: From ba-
sics to recent developments.,” in MCS, Michal Haindl, Josef
Kittler, and Fabio Roli, Eds. 2007, vol. 4472 of Lecture Notes
in Computer Science, pp. 501–512, Springer.

[34] M. Pal, “Random forests for land cover classification,” in
Geoscience and Remote Sensing Symposium, 2003. IGARSS



’03. Proceedings. 2003 IEEE International, July 2003, vol. 6,
pp. 3510–3512 vol.6.

[35] S.R. Joelsson, J.A. Benediktsson, and J.R. Sveinsson, “Ran-
dom forest classifiers for hyperspectral data,” in Geoscience
and Remote Sensing Symposium, 2005. IGARSS ’05. Proceed-
ings. 2005 IEEE International, July 2005, vol. 1, pp. 4 pp.–.

[36] J. Ham, Yangchi Chen, M. M. Crawford, and J. Ghosh, “In-
vestigation of the random forest framework for classification
of hyperspectral data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 43, no. 3, pp. 492–501, 2005.

[37] P.O. Gislason, J.A. Benediktsson, and J.R. Sveinsson, “Ran-
dom forest classification of multisource remote sensing and
geographic data,” in Geoscience and Remote Sensing Sym-
posium, 2004. IGARSS ’04. Proceedings. 2004 IEEE Interna-
tional, Sept 2004, vol. 2, pp. 1049–1052 vol.2.

[38] A. Merentitis, C. Debes, and R. Heremans, “Application of
ensemble learning in hyperspectral image classification: To-
wards selecting favorable spots in the bias-variance plane,”
IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, vol. 7, pp. 1089 – 1102, April
2014.

[39] J. Chan and D. Paelinckx, “Evaluation of random forest and
adaboost tree-based ensemble classification and spectral band
selection for ecotope mapping using airborne hyperspectral
imagery,” Remote Sensing of the environment, vol. 112 (6),
pp. 2999–3011, 2008.

[40] J. Friedman, “On bias, variance, 0/1-loss, and the curse-of-
dimensionality.,” Data Mining and Knowledge Discovery,
vol. 1, pp. 55–77, 1997.

[41] R. Kohavi and D.H. Wolpert, “Bias plus variance decomposi-
tion for zero-one loss functions.,” in Proceedings of the thir-
teenth international conference on Machine Learning, 1996,
pp. 275 – 283.

[42] L. Breiman, “Bias, variance, and arcing classifiers.,” Techni-
cal Report 460, Statistics Department, University of Califor-
nia., 1996.

[43] P. Domingos, “A unified bias-variance decomposition and its
applications.,” in Seventeenth International Conference on
Machine Learning, 2000, pp. 231–238.

[44] G.M. James, “Variance and bias for general loss functions.,”
Machine Learning, vol. 51, pp. 115–135, 2003.

[45] K. Fukunaga, Introduction to statistical pattern recognition
(2nd ed.), Academic Press Professional, Inc., San Diego, CA,
USA, 1990.

[46] P. Bartlett R.E. Schapire, Y. Freund and W.S. Lee, “Boosting
the margin: A new explanation for the efectiveness of voting
methods.,” in Proceedings of the Fourteenth International
Conference on Machine Learning, San Francisco, CA, USA,
1997.

[47] J.-M. Poggi R. Genuer and C. Tuleau, “Random forests:
Some methodological insights,” arXiv:0811.3619, SSN 0249-
6399, 2008.

[48] Y. Freund and R. Shapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Confer-
ence on Machine Learning, In L. Saitta, Ed., San Francisco,
1996, pp. 14–156.

[49] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pat-
tern Analysis, Cambridge University Press,, 2004.

[50] Pierre Geurts, Damien Ernst, and Louis Wehenkel, “Ex-
tremely randomized trees,” Machine Learning, vol. 63, pp.
3–42, 2006.

[51] M. Dalponte, L. Bruzzone, and D. Gianelle, “Fusion of hy-
perspectral and LiDAR remote sensing data for classification
of complex forest areas,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 46, no. 5, pp. 1416–1427, 2008.

[52] A.F. Elakshe, “Fusion of hyperspectral images and lidar-
based dems for coastal mapping,” Optics Lasers Eng., vol.
46, pp. 493–498, 2008.

[53] A. Swatantrana, R. Dubayaha, D. Robertsb, M. Hoftona, and
J.B. Blairc, “Mapping biomass and stress in the sierra nevada
using lidar and hyperspectral data fusion,” Remote Sensing of
Environment, vol. 115, pp. 2917–1930, 2011.

[54] S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fu-
sion of multiple classifiers for hyperspectral data analysis,”
Pattern Analysis and Applications, vol. 5, pp. 210–220, 2002.

[55] Nourzad S and A. Pradhan, “Binary and multi-class clas-
sification of fused lidar-imagery data using an ensemble
method,” Construction Research Congress, pp. 909–918,
2012.

[56] G. Moser and S.B. Serpico, “Combining support vector ma-
chines and Markov random fields in an integrated framework
for contextual image classification,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 51, no. 5, pp. 2734–
2752, 2013.

[57] A. A. Nielsen L. Gomez-Chova and G. Camps-Valls, “Ex-
plicit signal to noise ratio in reproducing kernel hilbert
spaces,” in Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium, 2011, pp. 3570 – 3573.

[58] A. A. Nielsen, “Kernel maximum autocorrelation factor and
minimum noise fraction transformations,” IEEE Transactions
on Image Processing, vol. 20 (3), pp. 612–624, 2011.

[59] J. Besag, “On the statistical analysis of dirty pictures,” Jour-
nal of the Royal Statistical Society, vol. 48, pp. 259–302,
1986.

[60] Javier Preciozzi, P. Muse, Andrés Almansa, Sylvain Du-
rand, Francois Cabot, Yann Kerr, A. Khazaal, and B. Rouge,
“Sparsity-based restoration of SMOS images in the pres-
ence of outliers,” in (IGARSS 2012) IEEE International
Geoscience and Remote Sensing Symposium. July 2012, pp.
3501–3504, IEEE.

[61] Freddy Fierens and Paul L. Rosin, “Filtering remote sensing
data in the spatial and feature domains,” in Image and Signal
Processing for Remote Sensing, Proc. SPIE, 1994, pp. 472–
482.

[62] Jisoo Ham, Yangchi Chen, Melba M. Crawford, and Joydeep
Ghosh, “Investigation of the random forest framework for
classification of hyperspectral data.,” IEEE T. Geoscience and
Remote Sensing, vol. 43, no. 3, pp. 492–501, 2005.


